Structure Revision of FD-891, a 16-Membered Macrolide Antibiotic

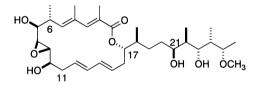
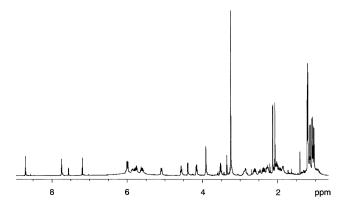
TADASHI EGUCHI,^{*,a} KEITA YAMAMOTO,^a KAZUTOSHI MIZOUE^b and KATSUMI KAKINUMA^{*,c}

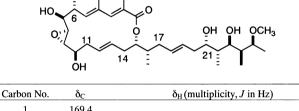
^a Department of Chemistry and Materials Science, Tokyo Institute of Technology,
O-okayama, Meguro-ku, Tokyo 152-8551, Japan
^b Taisho Pharmaceutical Co. Ltd.,
1-403, Yoshino-cho, Kita-ku, Saitama-shi 330-8530, Japan
^c Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan

(Received for publication December 8, 2003)

FD-891 was isolated from the fermentation broth of *Streptmyces graminofaciens* A-8890 in 1994, and was shown to have a cytotoxic activity *in vitro* against several tumor cell lines¹). The structure of FD-891 was first proposed to be an 18-membered macrolactone by spectroscopic means²), and recently, the stereochemistry of

Fig. 1. Proposed structures of FD-891.


Fig. 2. ¹H-NMR spectrum of FD-891 in pyridine- d_5 (400 MHz).

* Corresponding author: eguchi@cms.titech.ac.jp

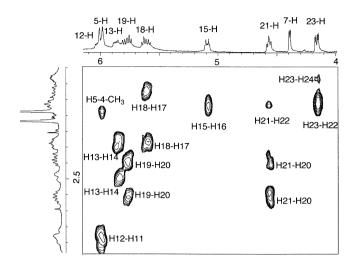
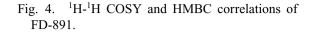
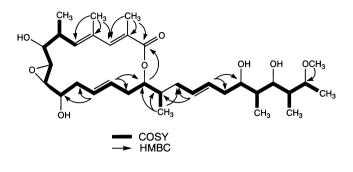
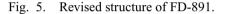

each chiral center of FD-891 was determined through synthetic studies of relevant fragments as well as X-ray diffraction of degradative derivatives as shown in Fig. 1³⁾. During our synthetic studies of FD-891 and its related compound, FD-892, we noticed the synthesized fragments including the C12-C15 conjugated double bond moiety showed a quite different signal pattern in ¹H NMR, especially the chemical shifts of the double bonds compared to those reported in natural FD-891 and FD-892.

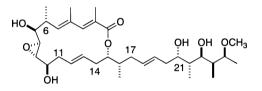
Table 1. ¹H and ¹³C NMR data of FD-891 in pyridine- d_5 .

Carbon No.	δ _C	$\delta_{\rm H}$ (multiplicity, J in Hz)
1	169.4	
2	124.0	
3	145.5	7.62 (s)
4	135.2	
5	144.4	5.88 (d, 5.2)
6	38.0	3.12 (m)
7	71.3	4.27 (d, 3.6)
8	56.1	3.23 (s)
9	57.8	3.79 (s)
10	72.8	3.78 (m)
11	39.0	2.76 (m)
12	131.0	5.90 (m)
13	127.5	5.73 (ddd, 4.8, 9.6, 14.8)
14	35.1	2.36 (brd, 13.6), 2.15 (m)
15	77.0	4.96 (dt, 6.4, 3.2)
16	35.1	1.90 (m)
17	36.5	2.15 (m), 1.90 (m)
18	129.1	5.48 (dt, 15.2, 7.2)
19	130.9	5.64 (dt, 15.2, 6.8)
20	39.0	2.49 (dt, 13.6, 7.2) 2.25 (dt, 13.6, 6.8)
21	71.4	4.46 (t, 6.0)
22	40.4	1.90 (m)
23	74.8	4.04 (dd, 3.2, 8.0)
24	41.5	1.74 (m)
25	80.8	3.39 (quintet, 6.4)
26	8.9	1.08 (d, 6.0)
2-CH3	14.0	2.01 (s)
4-CH ₃	15.8	1.95 (s)
6-CH ₃	17.1	1.02 (d, 6.8)
16-CH ₃	10.8	0.91 (d, 6.4)
22-CH ₃	16.7	0.96 (d, 6.8)
24-CH ₃	16.6	1.09 (d, 6.8)
25-OCH ₃	56.2	3.11 (s)


Fig. 3. ${}^{1}\text{H}{}^{-1}\text{H}$ COSY specrum of FD-891 in pyridine- d_{5} .




The numbering is according to Table 1.


Therefore, we undertook re-investigation of the structure of FD-891.

In order to clarify the position of the double bonds, we attempted several different solvents for ¹H NMR studies, since the original description suggested complex signal overlaps in CDCl₃²⁾. As a result, moderate spectral resolution was observed in pyridine- d_5 as shown in Fig. 2. Under these conditions, we examined several NMR spectra including COSY and HMBC spectra. The resulting ¹H and ¹³C NMR data are summarized in Table 1. As shown in ¹H-¹H COSY spectrum (Fig. 3), the conectivities of each double bond to the neighboring protons were clearly observed. These results clearly indicated that two disubstituted E-double bonds must be in isolated environments, but not in conjugated to each other. Based on these results, the plain structure of FD-891 has now been finalized to be a 16-membered macrolactone as shown in Fig. 4. This plain structure turned out to be the same as BE-45653⁴⁾ reported in 1997. Previously, we encountered certain difficulty in explaining the results of ozonolysis studies, however, the present revised structure of FD-891 is quite consistent with our degradation studies³⁾. The absolute structure of FD-891 is now depicted as shown in Fig. 5.

Although we cannot confirm the structure of FD-892, analog of FD-891, because the organism does not produce FD-892 any more, it seems likely that FD-892 also has the same carbon skeleton.

References

- SEKI-ASANO, M.; T. OKAZAKI, M. YAMAGISHI, N. SAKAI, K. HANADA & K. MIZOUE: Isolation and characterization of new 18-membered macrolides FD-891 and FD-892. J. Antibiotics 47: 1226~1233, 1994
- SEKI-ASANO, M.; Y. TSUCHIDA, K. HANADA & K. MIZOUE: Structures of new 18-membered macrolides FD-891 and FD-892. J. Antibiotics 47: 1234~1241, 1994
- EGUCHI, T.; K. KOBAYASHI, H. UEKUSA, Y. OHASHI, K. MIZOUE, Y. MATSUSHIMA & K. KAKINUMA: Stereostructure of a novel cytotoxic 18-membered macrolactone antibiotic FD-891. Org. Lett. 4: 3383~3386, 2002
- OGAWA, H.; S. NAKAJIMA, H. SUZUKI, K. OJIRI & H. SUDA: Antitumor agent BE-45653 manufacture with streptomyces. Jpn. Kokai Tokkyo Koho, 09087285, 1997